ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Yiren Lian, Hongchao Sun, Hao Yang, Xiaopeng Song, Xinjing Yang, Shutang Sun, Pengyi Wang, Lei Chen, Yeming Zhu, Guoqiang Li, Jiangang Zhang
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1398-1404
Research Article | doi.org/10.1080/00295450.2023.2200542
Articles are hosted by Taylor and Francis Online.
In the nuclear fuel cycle, 30 vol % tributyl phosphate/kerosene is always used as the major actinide extractant. However, there is a risk of fire accident during the usage of the solvent solution. It is necessary to investigate solvent fire because of the release of radioactive materials and possible overheating and blocking of ventilation filters. This paper discusses several tests of solvent solution combustion that were carried out to analyze the safety of solvent fire. Parameters such as gas emission of solvent burning, mass loss rate, and production of aerosol were obtained and analyzed. The experimental data obtained in this paper can be useful to develop a method of solvent fire assessment and evaluate a solvent fire accident in a nuclear fuel cycle facility.