ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Changan Ren, He Li, Jichong Lei, Jie Liu, Wei Li, Kekun Gao, Guocai Huang, Xiaohua Yang, Tao Yu
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1365-1372
Research Article | doi.org/10.1080/00295450.2023.2199098
Articles are hosted by Taylor and Francis Online.
With the advancement of artificial intelligence technology, intelligent diagnostic technology has been gradually implemented across various industries. This study proposes the use of convolutional neural networks–long short-term memory (CNNs-LSTM) for diagnosing faults in CPR1000 nuclear power plants (NPPs). To automatically extract data related to different types and levels of faults in the PCTRAN program, the study utilizes a self-developed AutoPCTRAN software and selects several key nuclear parameters as feature quantities. The study uses random sampling to create the training, validation, and test sets in an 8:1:1 ratio and identifies acceptable parameters to build the CNN-LSTM model. Test results show that the CNN-LSTM–based model for diagnosing CPR1000 NPP faults achieves a problem recognition rate of 99.6%, which validates the efficacy of the CNN-LSTM–based nuclear power fault diagnosis model.