ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
A. Talamo, Z. Zhong, Y. Gohar
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1319-1350
Research Article | doi.org/10.1080/00295450.2023.2202790
Articles are hosted by Taylor and Francis Online.
This study presents multiphysics analyses of the electron target cooling system of the accelerator-driven system (ADS) of the Kharkiv Institute of Physics and Technology (KIPT) using MCNP and Fluent computer programs. MCNP has been used to transport electrons, gammas, and neutrons, and to calculate the energy deposition in the target materials. The MCNP mesh-tally data have been imported into Fluent by a C subroutine that has been compiled and linked to Fluent as a user-defined function.
The KIPT ADS is located in Ukraine and was in operation until February 2022. The Fluent model is based on the computer-aided design files from the manufacturing process of the target assembly. The Fluent results for the reference case match very well the literature results obtained by STAR-CCM+ during the design phase. Other cases that differ from the reference one have been analyzed; in these cases, it is assumed a malfunction of the electron accelerator or of the water cooling system. The target cooling system operates normally for all the analyzed cases except when the inlet water mass flow rate is decreased. The transient analysis showed that the target cooling system can operate for 180 s with full power when the inlet water mass flow rate is decreased down by 75%.