ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Carlos X. Soto, Odera Dim, Yonggang Cui, Warren Stern
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1282-1294
Research Article | doi.org/10.1080/00295450.2023.2200573
Articles are hosted by Taylor and Francis Online.
Burnup measurement is an important step in material control and accountancy at nuclear reactors and may be done by examining gamma spectra of fuel samples. Traditional approaches rely on known correlations to specific photopeaks (e.g., Cs) and operate via a standard linear regression method. However, the quality of these regression methods is limited even in the best case and is significantly poorer at short fuel cooldown times, due to the elevated radiation background by short-lifetime isotopes and self-shielding effect of the fuel. For practical operation of pebble bed reactors (PBRs), quick measurements (in minutes) and short cooling times (in hours) are required from a safety and security perspective. We investigated the efficacy and performance of machine learning (ML) methods to predict the burnup of the pebble fuel from full gamma spectra (rather than specific discrete photopeaks) and found a full-spectrum ML approach to far outperform baseline regression predictions in all measurement and cooling conditions, including in operational-like measurement conditions. We also performed model and data ablation experiments to determine the relative performance impact of our ML methods’ capacity to model data nonlinearities and the inherent additional information in full spectra. Applying our ML methods, we found a number of surprising results, including improved accuracy at shorter fuel cooling times (the opposite of the norm), remarkable robustness to spectrum compression (via rebinning), and competitive burnup predictions even when using a background signal only (i.e., explicitly omitting known isotope photopeaks).