ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Carlos X. Soto, Odera Dim, Yonggang Cui, Warren Stern
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1282-1294
Research Article | doi.org/10.1080/00295450.2023.2200573
Articles are hosted by Taylor and Francis Online.
Burnup measurement is an important step in material control and accountancy at nuclear reactors and may be done by examining gamma spectra of fuel samples. Traditional approaches rely on known correlations to specific photopeaks (e.g., Cs) and operate via a standard linear regression method. However, the quality of these regression methods is limited even in the best case and is significantly poorer at short fuel cooldown times, due to the elevated radiation background by short-lifetime isotopes and self-shielding effect of the fuel. For practical operation of pebble bed reactors (PBRs), quick measurements (in minutes) and short cooling times (in hours) are required from a safety and security perspective. We investigated the efficacy and performance of machine learning (ML) methods to predict the burnup of the pebble fuel from full gamma spectra (rather than specific discrete photopeaks) and found a full-spectrum ML approach to far outperform baseline regression predictions in all measurement and cooling conditions, including in operational-like measurement conditions. We also performed model and data ablation experiments to determine the relative performance impact of our ML methods’ capacity to model data nonlinearities and the inherent additional information in full spectra. Applying our ML methods, we found a number of surprising results, including improved accuracy at shorter fuel cooling times (the opposite of the norm), remarkable robustness to spectrum compression (via rebinning), and competitive burnup predictions even when using a background signal only (i.e., explicitly omitting known isotope photopeaks).