ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Shigeki Shiba, Daiki Iwahashi, Tsuyoshi Okawa
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1154-1163
Research Article | doi.org/10.1080/00295450.2023.2191588
Articles are hosted by Taylor and Francis Online.
From the viewpoint of criticality management in the fuel debris retrieval operation at the Fukushima Daiichi Nuclear Power Station, it is important in criticality safety analyses to consider the behavior of fuel debris particles as they fall into the water, given that the neutron moderation condition of the fuel debris can dramatically change. In this study, we evaluated a reactivity insertion while fuel debris particles dropped into the water. Specifically, we considered the effects of the fuel debris particle-size distribution in either an erroneous operation or a postulated accident in the fuel debris retrieval operation. Three types of fuel debris particle-size distribution were assumed: monodisperse, uniform, and Rosin-Rammler. The behaviors of the fuel debris particles during sedimentation were evaluated using the coupled Distinct Element Method–Moving Particle Simulation (DEM-MPS) code. The multiplication factors corresponding to the behaviors of the falling fuel debris were calculated by a continuous-energy Monte Carlo code MVP3.0 with JENDL-4.0. Consequently, the multiplication factors changed with the particle motions during the sedimentation, and the trends of the multiplication factors differed between the particle-size distributions. Especially, the 2-cm monodisperse particle-size distribution showed the highest multiplication factor during sedimentation, the trend of which differed from the others in the fuel debris particles dispersing and piled-up phases in the water.