ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Shaoxuan Wang, Zhixian Lin, Ming Sun, Yuantao Yao, Jie Wu, Daochuan Ge
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1129-1144
Research Article | doi.org/10.1080/00295450.2023.2195357
Articles are hosted by Taylor and Francis Online.
In complex nuclear energy redundancy systems, there are many failure events that do not follow specific time distribution. For these atypical time-distribution events, traditional dynamic fault tree (DFT) methods cannot be applied directly, which has posed great challenges to reliability modeling and evaluating. In this contribution, we summarize atypical time-distribution events in nuclear energy redundancy systems and propose new modeling and evaluating methods based on DFT. To demonstrate the reasonability of the proposed methods, two case studies about make-up water pumps and emergency diesel generators are analyzed in comparison with traditional DFT. The results indicate that the proposed methods can effectively model and analyze the reliability of redundant systems with atypical time-distribution events. The proposed methods can provide useful information for optimization design of nuclear energy redundancy systems and has potential to improve the economy of nuclear power plants by relaxing overestimated unreliability.