ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Shaoxuan Wang, Zhixian Lin, Ming Sun, Yuantao Yao, Jie Wu, Daochuan Ge
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1129-1144
Research Article | doi.org/10.1080/00295450.2023.2195357
Articles are hosted by Taylor and Francis Online.
In complex nuclear energy redundancy systems, there are many failure events that do not follow specific time distribution. For these atypical time-distribution events, traditional dynamic fault tree (DFT) methods cannot be applied directly, which has posed great challenges to reliability modeling and evaluating. In this contribution, we summarize atypical time-distribution events in nuclear energy redundancy systems and propose new modeling and evaluating methods based on DFT. To demonstrate the reasonability of the proposed methods, two case studies about make-up water pumps and emergency diesel generators are analyzed in comparison with traditional DFT. The results indicate that the proposed methods can effectively model and analyze the reliability of redundant systems with atypical time-distribution events. The proposed methods can provide useful information for optimization design of nuclear energy redundancy systems and has potential to improve the economy of nuclear power plants by relaxing overestimated unreliability.