ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiang Meng, Zhongwei Yuan, Taihong Yan, Weifang Zheng
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1101-1107
Technical Paper | doi.org/10.1080/00295450.2023.2169041
Articles are hosted by Taylor and Francis Online.
The traditional evaporation process has obvious disadvantages when treating uranyl nitrate with a uranium concentration less than 10 g/L, such as more ancillary equipment, high energy consumption, and high cost. By contrast, nanofiltration equipment has low integration, and multivalent cations can be rejected effectively by nanofiltration membranes. In this work, a spiral-wound DK1812 nanofiltration membrane with an area of 0.325 m2 was used to treat a uranium nitrate solution with a uranium concentration of 10 g/L. The uranium concentration in the permeate is 16.91 mg/L, which means that the uranium rejection rate is 99.83% and the permeate flux of the solution is 71.1 L/(m2·h) under the conditions of a feed temperature of 30°C, a tangential velocity of 30 cm/s, and a transmembrane pressure of 1.5 MPa.