ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michio Murase, Yoichi Utanohara
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1086-1100
Technical Paper | doi.org/10.1080/00295450.2023.2175598
Articles are hosted by Taylor and Francis Online.
The objective of this study was to evaluate the effects of superheat on wall condensation from a steam and air mixture. We previously measured the radial and axial temperature profiles of a superheated steam-air mixture in a vertical pipe with a diameter of 49.5 mm and a cooling height of 610 mm. In this study, we carried out a numerical simulation for the previous measurements by using the computational fluid dynamics (CFD) code FLUENT, and evaluated the profiles of the mixture temperature Tg and steam mass fraction Xs. The profiles of Tg and the saturated temperature Ts obtained from Xs agreed well with those measured with superheated and saturated conditions, respectively. The validity of the correlation to evaluate a condensation heat flux qc (which was based on the gradient of Xs) was confirmed. Profiles of the dimensionless velocity u+, temperature T+, and steam mass fraction Ys+ were obtained, and they were compared with wall functions (i.e., the linear function for a viscous sublayer and the logarithmic law for a turbulent layer). The computed profile agreed with the wall function for u+, agreed relatively well with the wall function for T+, and agreed well with the correlation for Ys+ obtained from data measured with saturated steam-air conditions in the region of the turbulent layer.