ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Michio Murase, Yoichi Utanohara
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1086-1100
Technical Paper | doi.org/10.1080/00295450.2023.2175598
Articles are hosted by Taylor and Francis Online.
The objective of this study was to evaluate the effects of superheat on wall condensation from a steam and air mixture. We previously measured the radial and axial temperature profiles of a superheated steam-air mixture in a vertical pipe with a diameter of 49.5 mm and a cooling height of 610 mm. In this study, we carried out a numerical simulation for the previous measurements by using the computational fluid dynamics (CFD) code FLUENT, and evaluated the profiles of the mixture temperature Tg and steam mass fraction Xs. The profiles of Tg and the saturated temperature Ts obtained from Xs agreed well with those measured with superheated and saturated conditions, respectively. The validity of the correlation to evaluate a condensation heat flux qc (which was based on the gradient of Xs) was confirmed. Profiles of the dimensionless velocity u+, temperature T+, and steam mass fraction Ys+ were obtained, and they were compared with wall functions (i.e., the linear function for a viscous sublayer and the logarithmic law for a turbulent layer). The computed profile agreed with the wall function for u+, agreed relatively well with the wall function for T+, and agreed well with the correlation for Ys+ obtained from data measured with saturated steam-air conditions in the region of the turbulent layer.