ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Jintae Kim, Asad Ullah Amin Shah, Hyun Gook Kang, Tunc Aldemir
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1068-1085
Technical Paper | doi.org/10.1080/00295450.2023.2171271
Articles are hosted by Taylor and Francis Online.
Accident tolerant fuel (ATF) is expected to delay or prevent core damage by providing additional coping time under accidents involving loss of core cooling. The effect of extended coping time may vary depending on the plant response to accidents. Age-related component degradation that deteriorates plant performance over time could have an impact on the actual advantages of ATF. The potential safety benefits of two near-term ATF candidates, including Cr-coated Zr cladding and FeCrAl cladding, are assessed for a 2-in. loss-of-coolant accident with failed high-pressure safety injection using the dynamic event tree (DET) approach considering possible stress corrosion cracking of steam generator (SG) tubing under aging. The DET approach allows likelihood quantification of accident sequences leading to core damage, including stochastic variation of system response and human actions during accident mitigation.
The safety benefits of the selected ATF claddings in terms of additional coping time and the core damage frequency reduction rate under specified accident situations were quantitatively estimated. The results show that the deployment of the two selected ATF claddings is expected to lead to longer coping times and lower core damage frequency due to the wider safety margin to peak cladding temperature they provide. The safety advantages would be greater as SG tube degradation proceeds. Thus, the two ATF candidates would lead to less severe consequences in terms of likelihood of core damage and susceptibility to the SG tube degradation than UO2-Zr fuel.