ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Zahra Papi, Farrokh Khoshahval
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1050-1067
Technical Paper | doi.org/10.1080/00295450.2023.2167462
Articles are hosted by Taylor and Francis Online.
There is an obvious effort to increase the burnup of used fuel assemblies in the Bushehr WWER-1000 Nuclear Power Plant (BNPP) in order to improve fuel utilization. The outcomes of this research could result in an increase in the BNPP reactor cycle length, which would lead to improved fuel consumption. Considering the lack of uranium resources and the planning to use new types of fuel in the BNPP, the use of integrated burnable absorber (IBA) materials is of great importance. An analysis of the performance of various IBAs, including Gd2O3-UO2, Er2O3-UO2, and Dy2O3-UO2, as well as the standard (proposed by the designer) burnable absorber (BA) (CrB2Al) in the BNPP, and their impact on fuel neutronic characteristics has been performed. Five fuel assemblies: one without a BA fuel rod and four each containing standard BA gadolinia, erbia, and dysprosia fuel pins were investigated. The neutronic properties of BAs were evaluated by the infinite multiplication factor, reactivity swing, and power peaking factor dependence on fuel burnup. Gadolinia, with a concentration of 5%, has the greatest effect on initial reactivity with 10 893 pcm and the lowest effect on the reactivity swing with 0.277 Δk among the other BAs, which leads to selecting the most appropriate BA for improving reactor core stabilities and enhancing operational safety. The gadolinium IBA extends the cycle burnup by about 1 GWd/tonne U compared to the standard BA. At the beginning of the cycle, erbium has a more uniform power distribution than the standard BA; however, at the end of the cycle, gadolinia has a more uniform power distribution.