ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
CFS working with NVIDIA, Siemens on SPARC digital twin
Commonwealth Fusion Systems, a fusion firm headquartered in Devens, Mass., is collaborating with California-based computing infrastructure company NVIDIA and Germany-based technology conglomerate Siemens to develop a digital twin of its SPARC fusion machine. The cooperative work among the companies will focus on applying artificial intelligence and data- and project-management tools as the SPARC digital twin is developed.
A. John Arul, Parthkumar Rajendrabhai Patel, Darpan Krishnakumar Shukla
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1024-1039
Technical Paper | doi.org/10.1080/00295450.2023.2175584
Articles are hosted by Taylor and Francis Online.
Passive safety systems help to improve overall plant safety, reliability, and resilience. However, the real gain in the use of passive systems depends on the robustness of the design utilizing the passive process and the role of active elements, if any. In this paper, we propose a fan-controlled sodium-to-air heat exchanger (AHX) system design for a failsafe and passive decay heat removal (DHR) function in a pool-type sodium-cooled fast reactor. The proposed system uses a fan to control air flow and minimize heat loss during normal operation, and when the fan trips due to loss of power or a trip signal, DHR gets enabled in a failsafe mode. The system is analyzed with the help of a simplified one-dimensional model as well as with detailed computational fluid dynamics software. It is found from analysis that it is possible to control and maintain the air flow to about 4% to 5% of full flow, as in the case of conventional dampers, to minimize heat loss during normal reactor operation. The reliability of the proposed system is also analyzed and shows that the fan-controlled AHX-based decay heat removal system (DHRS) has a much better reliability compared to the conventional passive DHRS with active damper-dependent operation.