ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Deniz Canbula, Bora Canbula
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 895-901
Technical Paper | doi.org/10.1080/00295450.2022.2163802
Articles are hosted by Taylor and Francis Online.
Some isotopes such as 123I and 124I are useful in medical science, and thus, the production of these isotopes has great importance. Iodine-123 is the gamma-emitting radioisotope of radioiodine, and 124I is the long-lived positron-emitting radioisotope of radioiodine, and they have applications in diagnosis via both Single Photon Emission Computed Tomography (SPECT)/Positron Emission Tomography (PET) and radiotherapy. Therefore, many theoretical and experimental studies are performed for these isotopes. In this study, the cross sections of the 123Te(p,n), 124Te(p,n), and 124Te(p,2n) reactions up to 31 MeV, where 123I and 124I can be produced, are calculated by importing the Collective Semi-Classical Fermi Gas Model (CSCFGM) to the Talys 1.96 computer code. The predictions are compared with the default theoretical calculations of Talys 1.96 and existing experimental data taken from the EXFOR library. The results are in good agreement with the experimental data, and therefore, CSCFGM looks to be a useful tool for predicting the production reactions of some therapeutic isotopes.