ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Yusuke Ohashi, Masamitsu Shimaike, Takashi Matsumoto, Nobuo Takahashi, Kaoru Yokoyama, Yasuyuki Morimoto
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 777-786
Technical Note | doi.org/10.1080/00295450.2022.2145136
Articles are hosted by Taylor and Francis Online.
At the Ningyo-Toge Environmental Engineering Center, technical developments related to uranium refining conversion and enrichment have been completed and decommissioning of these facilities has begun. The error between the quantity of dismantled materials estimated from the facility design drawings and the actual quantity of the dismantled materials was about 1.7% when averaged over the entire facilities already dismantled. Most of the dismantled materials, which have no contamination history and were properly managed, were confirmed to have surface radioactivity concentrations below the detection limit and could be carried out to recyclers as nonradioactive (NR) waste. The dismantled materials that could not be certified as NR needed to be cleared and reused. By evaluating two types of gamma rays of 234mPa from the mockup dismantled objects, it was found that uranium corresponding to a clearance level (1.2 × 102 Bq/kg) could be quantified.