ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Braden Goddard, Aaron Totemeier
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 696-706
Technical Paper | doi.org/10.1080/00295450.2022.2145836
Articles are hosted by Taylor and Francis Online.
The United States and the Russian Federation have agreed to dispose of their excess weapons-grade plutonium, with consuming the material as nuclear fuel in light water reactors for electricity generation often discussed as the best option. Lightbridge Corporation has several thermal reactor fuel designs that offer very high burnups, in the range of 21 at. % or approximately 190 900 MWd/tonne of heavy metal, which make them well suited for consuming excess weapons-grade plutonium. MCNP6.2 computer simulations were performed to quantify the mass of plutonium consumed in a Lightbridge-designed fuel rod compared to traditional mixed-oxide (MOX) fuel, as well as the attractiveness of the plutonium in the used fuel for weapons purposes. The results of these simulations show that the Lightbridge plutonium disposition fuel variant consumes approximately 5.5 times more plutonium per fuel rod than MOX fuel and that the material attractiveness of the Lightbridge-used plutonium is noticeably less than that of MOX fuel.