ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Milos I. Atz, Massimiliano Fratoni
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 677-695
Technical Paper | doi.org/10.1080/00295450.2022.2146475
Articles are hosted by Taylor and Francis Online.
Future utilization of nuclear power may involve fuel cycles that incorporate new reactors and new fuel utilization schemes. In comparing fuel cycles in terms of their waste characteristics, many previous studies have focused on properties intrinsic to the wastes themselves: mass, radioactivity, and/or radiotoxicity. These properties do not directly inform analyses that evaluate waste management strategies, impacts, or risks. For these, information about waste packages and waste loading is critical. This paper reports on research performed to bridge the divide between nuclear fuel cycle and waste management analyses while accommodating the diversity of reactors, processes, and waste forms that could be utilized by advanced fuel cycles. An object-oriented Python code, Nuclear Waste Analysis in Python, was written to connect fuel cycle data with backend process information, thereby generating waste form characteristics and package inventories. The backend process models are informed by literature review and engineering judgment. The package is applied to the fuel cycles considered in the Fuel Cycle Evaluation and Screening (FCES) study and is benchmarked against the FCES study waste management evaluation metric data for mass and radioactivity. Hypothetical waste package inventories are reported for each fuel cycle as functions of spent fuel and high-level waste loading.