ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Shefali Saxena, Ayman I. Hawari
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 667-676
Technical Paper | doi.org/10.1080/00295450.2022.2148839
Articles are hosted by Taylor and Francis Online.
In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry using adaptive digital pulse processing for online interrogation of pebble bed reactor (PBR) fuel. This work incorporates the physics of the radiation emission phenomenon with advanced pulse processing techniques to develop a high-resolution gamma-spectrometry system capable of handling ultrahigh count rates in various applications of nuclear science and technology. Computational modeling was used to simulate the irradiation of PBR fuel and to design the adaptive digital pulse processing–based gamma-ray spectrometry system. Monte Carlo simulations were performed to study the gamma-ray spectra of the PBR fuel and to perform coupled photon-electron transport analysis to calculate the pulse-height spectrum of PBR fuel. A Monte Carlo computer routine was used to predict the effect of pulse pileup at high-count-rate conditions. This code utilizes the random interval distribution function based on Poisson statistics to simulate the pileup behavior. Combined with pileup logic, a recursive trapezoid filter with adaptive shaping parameters was implemented to simulate the pileup behavior of a digital gamma-ray spectrometry system. The adaptive shaping algorithm selects the rise time of the trapezoid shaping filter based on the separation between the input pulses for each incoming signal. The simulation results using the proposed adaptive digital pulse processing demonstrated that with the improved energy resolution, the burnup information can be more accurately determined on a pebble-by-pebble basis as compared to fixed shaping, and tasks related to in-core fuel management, safeguards, and waste management become feasible to perform efficiently and accurately.