ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Victor C. Leite, Elia Merzari, Roberto Ponciroli, Lander Ibarra
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 645-666
Technical Paper | doi.org/10.1080/00295450.2022.2151822
Articles are hosted by Taylor and Francis Online.
In this study, the capabilities of a physics-informed convolutional neural network (CNN) for reconstructing the temperature field from a limited set of measurements taken at the boundaries of internal flows are demonstrated. Such an approach enables the development of less invasive monitoring methods for real-time plant diagnostics. As a test case, a Molten Salt Fast Reactor (MSFR) design was selected. This circulating fuel reactor has received interest from both scientific and industrial communities due to its intrinsic safety and sustainability. Molten salt flows in such reactors, however, can present highly localized temperature peaks that can induce significant thermal stresses onto the vessel walls. At these local maxima, the salt temperature may exceed a thousand kelvins, which makes a direct measurement challenging or even unfeasible. The proposed CNN algorithm allows one to detect indirectly such discontinuities through an accurate, albeit indirect, temperature measurement method during reactor operation. The datasets employed to train and test the machine learning models in the present work were generated with Nek5000, a computational fluid dynamics (CFD) code developed at Argonne National Laboratory. The CNN algorithm is trained with CFD results that span a set of MSFR operational power and flow ranges. To demonstrate the efficacy of the algorithm, predictions are made for test cases contained within the training range but for which the CFD data were not used when training. Results demonstrate that the proposed technique properly characterizes temperature peaks and distributions within the domain for a broad range of scenarios.