ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Victor C. Leite, Elia Merzari, Roberto Ponciroli, Lander Ibarra
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 645-666
Technical Paper | doi.org/10.1080/00295450.2022.2151822
Articles are hosted by Taylor and Francis Online.
In this study, the capabilities of a physics-informed convolutional neural network (CNN) for reconstructing the temperature field from a limited set of measurements taken at the boundaries of internal flows are demonstrated. Such an approach enables the development of less invasive monitoring methods for real-time plant diagnostics. As a test case, a Molten Salt Fast Reactor (MSFR) design was selected. This circulating fuel reactor has received interest from both scientific and industrial communities due to its intrinsic safety and sustainability. Molten salt flows in such reactors, however, can present highly localized temperature peaks that can induce significant thermal stresses onto the vessel walls. At these local maxima, the salt temperature may exceed a thousand kelvins, which makes a direct measurement challenging or even unfeasible. The proposed CNN algorithm allows one to detect indirectly such discontinuities through an accurate, albeit indirect, temperature measurement method during reactor operation. The datasets employed to train and test the machine learning models in the present work were generated with Nek5000, a computational fluid dynamics (CFD) code developed at Argonne National Laboratory. The CNN algorithm is trained with CFD results that span a set of MSFR operational power and flow ranges. To demonstrate the efficacy of the algorithm, predictions are made for test cases contained within the training range but for which the CFD data were not used when training. Results demonstrate that the proposed technique properly characterizes temperature peaks and distributions within the domain for a broad range of scenarios.