ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. Mohammadbaghery, S. Saramad, M. Shamsaei
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 636-642
Technical Note | doi.org/10.1080/00295450.2022.2138082
Articles are hosted by Taylor and Francis Online.
Different strategies exist for electron multiplication in a proportional radiation gas detector. In this work, the amplification region is formed by an array of equipotential stainless steel wires that were fixed at equal distance from a bared silver flat ribbon cable as the anode of the detector. The wires in this structure have the same role as the micromesh in Micro-Mesh Gaseous (Micromegas) detectors. Its fabrication method is simple and low cost. In this work, the amplification gain of the fabricated sample at different anode voltages was extracted, and the maximum achievable gain without electric discharge was measured to be M = 315 at 700 V. The proposed detector has an inherently two-dimensional positioning capacity, and the position sensitivity of the detector in one dimension was tested, the results of which show a good discrepancy with theoretical expectation. For the fabricated detector, the maximum number of charges before electric discharge was extracted (1 × 107) and compared with the best-designed Micromegas detector (6 × 107). These results clearly show that the proposed detector, despite its simplicity and cost-effective process, has a reasonable quality in comparison to the Micromegas detector.