ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yoshikazu Tamauchi, Takashi Kodama, Naoya Sato, Keita Saito, Takahiro Chikazawa
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 622-635
Technical Note | doi.org/10.1080/00295450.2022.2130659
Articles are hosted by Taylor and Francis Online.
As an explosion of radiolitically generated hydrogen is listed as a type of severe accident in the new regulation for nuclear fuel cycle facilities, it is important to evaluate the realistic source term of this type of accident. The airborne release fraction (ARF) is a key parameter in evaluating the source term of a hydrogen explosion. Therefore, a pressurization experiment and a hydrogen explosion experiment that induced a hydrogen explosion have been performed. As a result, the ARFs obtained from the pressurization experiment and hydrogen explosion experiment were approximately 1 × 10−5 and 1 × 10−6, respectively. There was no marked difference in the pressure dependency and liquid droplet particle size between the pressurization and hydrogen explosion experiments.