ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ivars Neretnieks
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 604-621
Technical Paper | doi.org/10.1080/00295450.2022.2136440
Articles are hosted by Taylor and Francis Online.
Water flows in only a small fraction of the total area of the fractures in fractured rocks. The width of the “channels” is often in the range of centimeters to tens of centimeters. Nuclides can diffuse into and out of the porous rock matrix, which causes them to be significantly retarded compared to the water velocity. In discrete facture networks, diffusion is modeled to be linear and perpendicular to the fracture surface. From a narrow channel, the diffusion cloud would then be as wide as the channel. When the nuclide has propagated farther than the channel width, the diffusion will become essentially radial, which allows the nuclide flux to increase enormously. For the times of interest for a repository for high-level nuclide waste, this will increase nuclide flux into the matrix by tens to thousands of times, and consequently, the nuclide retardation in the flowing water. Radial diffusion was not invoked in the performance assessment of the Forsmark site, which in January 2022 was chosen by the government to locate Sweden’s high-level waste repository. It is shown, using data from this site, that the effect of radial diffusion from the narrow channels considerably increases the retardation of any escaping radionuclides, potentially allowing for the use of thinner copper canisters.