ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Ivars Neretnieks
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 604-621
Technical Paper | doi.org/10.1080/00295450.2022.2136440
Articles are hosted by Taylor and Francis Online.
Water flows in only a small fraction of the total area of the fractures in fractured rocks. The width of the “channels” is often in the range of centimeters to tens of centimeters. Nuclides can diffuse into and out of the porous rock matrix, which causes them to be significantly retarded compared to the water velocity. In discrete facture networks, diffusion is modeled to be linear and perpendicular to the fracture surface. From a narrow channel, the diffusion cloud would then be as wide as the channel. When the nuclide has propagated farther than the channel width, the diffusion will become essentially radial, which allows the nuclide flux to increase enormously. For the times of interest for a repository for high-level nuclide waste, this will increase nuclide flux into the matrix by tens to thousands of times, and consequently, the nuclide retardation in the flowing water. Radial diffusion was not invoked in the performance assessment of the Forsmark site, which in January 2022 was chosen by the government to locate Sweden’s high-level waste repository. It is shown, using data from this site, that the effect of radial diffusion from the narrow channels considerably increases the retardation of any escaping radionuclides, potentially allowing for the use of thinner copper canisters.