ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yang Hong Jung, Hee Moon Kim
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 595-603
Technical Paper | doi.org/10.1080/00295450.2022.2133935
Articles are hosted by Taylor and Francis Online.
The oxide layer of atomized U-Mo particle nuclear fuel was analyzed using the electron probe microanalyzer (EPMA) wavelength dispersive spectroscopy (WDS) image mapping function. The density of the used nuclear fuel was 2.6 gU/cm3 and the burnup was 16.4%. Typically, measurements of the oxide layer of most nuclear fuel specimens that have been irradiated for research and experimental purposes in the Korea Atomic Energy Research Institute HANARO research reactor have been performed using metallographic equipment. But an oxide layer was not observed in the nuclear fuel used in this study. Therefore, we conducted this study to confirm the presence and thickness of the oxide layer using EPMA WDS image mapping analysis. We were able to confirm the existence of the oxide layer, but there were many shortcomings in determining the exact thickness of the oxide layer using only the identified X-ray image mapping. In this paper, we present a way to accurately measure the oxide layer by recalling the derived original X-ray values as Excel data. To accurately analyze the oxide layer derived from the image, a preliminary study was performed using samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU pressurized heavy water reactor. In the preliminary study, the exact thickness of the oxide layer measured by metallography and the results obtained by measuring the thickness of the oxide layer with Excel data obtained by X-ray mapping were compared, inferred, and applied to this study. In this study, a method of accurately measuring the thickness of an oxide layer using Excel data obtained by EPMA WDS image mapping of the oxide layer of plate-type fuel, which was not confirmed using metallography equipment, is described in detail.