ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Karen Dawn Colins
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 582-594
Technical Paper | doi.org/10.1080/00295450.2022.2131953
Articles are hosted by Taylor and Francis Online.
From the published results of experiments investigating the effects of delayed hydride cracking (DHC) on spent fuel Zircaloy cladding integrity, relevant data have been extracted and re-analyzed, taking advantage of inferential statistics and an information-theoretic model selection criterion. Statistical tolerance intervals, the method of maximum likelihood estimation, and the Akaike information criterion, corrected for small sample size, were applied to a small sample of measured values of the threshold stress-intensity factor . The purpose was to create a well-grounded probability density function for use in a mathematical model correlating random variates of with important conditions for the initiation of crack growth by DHC, specifically, cladding hoop stress and the depth and shape of surface flaws. A selection criterion purposely designed for small sample sizes and the robust nature of inferential statistics were ideally suited for the intended reevaluation. The fidelity of the mathematical model was protected by the exclusion of any simplifying approximations, e.g., substitution of constants or single-valued descriptive statistics for variables. The probabilistic effect of the random variable was thereby precisely mapped onto the linearly correlated variable, threshold cladding hoop stress, as a function of surface flaw depth and shape. Contour plots of the results constitute significant improvements over previous quantitative single-point estimates of the effects of DHC on spent fuel Zircaloy cladding integrity.