ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Tetsuya Mouri, Masayuki Naganuma, Shigeo Ohki
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 532-548
Technical Paper | doi.org/10.1080/00295450.2022.2133514
Articles are hosted by Taylor and Francis Online.
This paper deals with a conceptual study on a plutonium (Pu) and minor actinide (MA) burning fast reactor core for the distant future phaseout of a fast reactor fuel cycle after it is commercialized and used for a long time. This burning core aims to reduce the Pu and MA inventories contained in the fuel cycle through multiple recycling. A key point for the core design is the degradation of Pu and MAs during multiple recycling. This degradation affects the feasibility of the nuclear design by increasing the sodium void reactivity and decreasing the absolute value of the Doppler constant. A feasible core concept was found by incorporating the following three factors to improve the reactivity coefficients: core geometry flattening, fuel burnup reduction, and use of silicon carbide (SiC) in the cladding and wrapper tubes. Notably, softening the neutron spectrum using the SiC structural material not only improved the reactivity coefficients but also indirectly mitigated the degradation of Pu and MAs. Consequently, the designed core allowed for multiple recycling to continue until the Pu and MAs reduced significantly, particularly by about 99% in a phaseout scenario starting from a fast reactor fleet of 30-GWe nuclear power capacity. Fast reactors were found to have the potential to become self-contained energy systems that can minimize the inventories of Pu they produced themselves, as well as long-lived MAs. Fast reactors can be among the important options for environmental burden reduction in the future.