ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tetsuya Mouri, Masayuki Naganuma, Shigeo Ohki
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 532-548
Technical Paper | doi.org/10.1080/00295450.2022.2133514
Articles are hosted by Taylor and Francis Online.
This paper deals with a conceptual study on a plutonium (Pu) and minor actinide (MA) burning fast reactor core for the distant future phaseout of a fast reactor fuel cycle after it is commercialized and used for a long time. This burning core aims to reduce the Pu and MA inventories contained in the fuel cycle through multiple recycling. A key point for the core design is the degradation of Pu and MAs during multiple recycling. This degradation affects the feasibility of the nuclear design by increasing the sodium void reactivity and decreasing the absolute value of the Doppler constant. A feasible core concept was found by incorporating the following three factors to improve the reactivity coefficients: core geometry flattening, fuel burnup reduction, and use of silicon carbide (SiC) in the cladding and wrapper tubes. Notably, softening the neutron spectrum using the SiC structural material not only improved the reactivity coefficients but also indirectly mitigated the degradation of Pu and MAs. Consequently, the designed core allowed for multiple recycling to continue until the Pu and MAs reduced significantly, particularly by about 99% in a phaseout scenario starting from a fast reactor fleet of 30-GWe nuclear power capacity. Fast reactors were found to have the potential to become self-contained energy systems that can minimize the inventories of Pu they produced themselves, as well as long-lived MAs. Fast reactors can be among the important options for environmental burden reduction in the future.