ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Kieran Dolan, Guanyu Su, Guiqiu Zheng, Michael Ames, David Carpenter, Lin-Wen Hu
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 515-531
Technical Paper | doi.org/10.1080/00295450.2022.2135933
Articles are hosted by Taylor and Francis Online.
Predicting the distribution and release of tritium remains a technical challenge for advanced nuclear reactors with molten Flibe (2LiF-BeF2) salt coolants. Tritium transport models, which are currently used to forecast release behavior, are limited by uncertainty in Flibe-related tritium transport properties and by a lack of relevant benchmark experiments to test input parameters and solution methods. A new test facility has been developed at the Massachusetts Institute of Technology Research Reactor (MITR) to irradiate a molten Flibe target in an ex-core neutron beam port to further investigate tritium transport mechanisms at prototypical reactor conditions. The experiment monitored the time-dependent release of tritium from the salt-free surface and the permeation rate of tritium through the stainless steel Flibe-containing test stand. Measured results were benchmarked with a multiphysics tritium transport simulation to resolve complex effects in the test. Trends in tritium release rates from the irradiation were in agreement with the multiphysics simulation of the test, which combined computational fluid dynamics, radiative heat transfer in participating media, and tritium transport in STAR-CCM+.