ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Hongbin Zhang, Han Bao, Tate Shorthill, Edward Quinn
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 377-389
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2076486
Articles are hosted by Taylor and Francis Online.
Upgrading the existing analog instrumentation and control (I&C) systems to state-of-the-art digital I&C (DI&C) systems will greatly benefit existing light water reactors. However, the issue of software common cause failure (CCF) remains an obstacle in terms of qualification for digital technologies. Existing analyses of CCFs in I&C systems mainly focus on hardware failures. With the application and upgrading of new DI&C systems, design flaws could cause software CCFs to become a potential threat to plant safety, considering that most redundancy designs use similar digital platforms or software in their operating and application systems. With complex multilayer redundancy designs to meet the single failure criterion, these I&C safety systems are of particular concern in U.S. Nuclear Regulatory Commission licensing procedures. In Fiscal Year 2019, the Risk-Informed Systems Analysis (RISA) Pathway of the U.S. Department of Energy’s Light Water Reactor Sustainability Program initiated a project to develop a risk assessment strategy for delivering a strong technical basis to support effective, licensable, and secure DI&C technologies for digital upgrades and designs. An integrated risk assessment for the DI&C process was proposed for this strategy to identify potential key digital-induced failures, implement reliability analyses of related digital safety I&C systems, and evaluate the unanalyzed sequences introduced by these failures (particularly software CCFs) at the plant level. This paper summarizes these RISA efforts in the risk analysis of safety-related DI&C systems at Idaho National Laboratory.