ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Hossein Zayermohammadi Rishehri, Majid Zaidabadi Nejad
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 193-213
Technical Paper | doi.org/10.1080/00295450.2022.2120319
Articles are hosted by Taylor and Francis Online.
Small modular reactors (SMRs) can be a significant option for developing countries with low energy demand. Due to the lack of sufficient experience in the field of SMRs, extensive research should be done on SMRs to improve the performance of these systems. Using dual surface-cooled fuel (DSCF) is one of the methods that can increase the performance of SMRs. In this study, for the first time the core of a NuScale reactor (as a SMR) is designed based on DSCF without any change in core dimensions by analyzing neutronic, thermal-hydraulic, and natural circulation parameters. In addition, according to the departure from nucleate boiling ratio, the uprate of the thermal power in a reactor using DSCF is investigated. For this purpose, typical solid fuels as well as DSCFs under clean-cold and full-power conditions are primarily modeled for the four different lattices that maintain the same assembly dimensions, mass, and enrichment fuels as the original fuel assembly. The effective multiplication factor, and power peaking factor, as important neutronic parameters, are calculated. Then the departure from nucleate boiling, pressure drop, velocity, and temperature distribution calculations, as important thermal-hydraulic and natural circulation parameters, are accomplished via a computational fluid dynamics code. The best core configuration of DSCF for the NuScale core is determined based on comparing the neutronic, thermal-hydraulic, and natural circulation parameters of various lattices and typical solid fuels. Regarding the final result, a DSCF assembly configuration, called a 12 × 12 assembly, is suggested.