ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
F.-X. Ouf, M. De Mendonca Andrade, H. Feuchter, S. Duval, C. Volkringer, T. Loiseau, F. Salm, P. Ainé, L. Cantrel, A. Gil-Martin, F. Hurel, C. Lavalette, P. March, P. Nerisson, J. Nos, L. Bouilloux
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 169-192
Technical Paper | doi.org/10.1080/00295450.2022.2129274
Articles are hosted by Taylor and Francis Online.
Experimental results are reported on the airborne release, under fire conditions, of hazardous materials dissolved in a mixture of organic solvents [tributylphosphate (TBP) and hydrogenated tetrapropylene (HTP)] representative of the nuclear fuel recycling process. Cerium and ruthenium have been considered, respectively, as stable and volatile fission products that eventually could be released as airborne particles during thermal degradation of contaminated and inflammable liquids. Airborne release fractions (ARFs) and their experimental uncertainties have been determined. Considering fire involving contaminated organic solvents, higher ARFs are reported for ruthenium Ru(+III) (0.99 ± 1.20%) in comparison with cerium [0.22 ± 0.31% and 0.20 ± 0.28% for Ce(+III) and Ce(+IV), respectively]. This discrepancy is partially due to the volatility of ruthenium formed under these conditions. Considering configurations involving an aqueous nitric acid phase placed below contaminated solvents, boiling of this phase enhances the release of contaminant materials: 1.78 ± 1.06% and 1.01 ± 1.31% for Ce(+III) and Ce(+IV), respectively, and 12.41 ± 29.45% for Ru(+III). Analysis of the size distribution, morphology, and chemical composition of the released particles and droplets emitted during HTP/TBP bubble collapse are reported, highlighting the contribution of bubble bursting at the solvent surface to airborne release.