ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
M. Nedim Cinbiz, Chase N. Taylor, Erik Luther, Holly Trellue, John Jackson
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S136-S145
Technical Note | doi.org/10.1080/00295450.2022.2121583
Articles are hosted by Taylor and Francis Online.
The emergence of microreactor technology has helped to drive supporting nuclear materials qualification and acceptance processes. One essential component in these small reactors is a solid moderator, which typically consists of metal hydride and cladding. While the behavior and performance of metal-hydride moderators go back to early advanced reactor development for nuclear-powered aviation and space propulsion, there remains a knowledge gap in the understanding of hydrogen transport–related phenomena and irradiation performance for hydride moderators. This impacts the acceptance/qualification of hydride moderators for microreactors.
The goal of this technical note is to lay out a potential path forward for advanced moderator qualification and acceptance for designers and developers of microreactors. The proposed approach has benefited from a model microreactor core with the design parameters of a hydride moderator. Based on the model core and design parameters, a simple chart was developed for the major challenges of hydride moderators where potential incidents, causes, effects, and resolutions are described. The relation between the offered resolutions and the maturity of the metal-hydride moderator technology was emphasized using technological readiness. Technological readiness levels (TRLs) were clustered to three sets: physical phenomena related, reactor irradiations, and system demonstration. Some essential needs to fill the knowledge gaps are discussed for physical phenomena–related TRLs. For reactor irradiations, the importance of identifying goals and priorities is stressed to reach certain TRLs. For system demonstration, it is noted that metal-hydride moderator qualification must comply with the overall microreactor design.