ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Holly Trellue, Chase Taylor, Erik Luther, Theresa Cutler, Aditya Shivprasad, J. Keith Jewell, Dasari V. Rao, Michael Davenport
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S123-S135
Technical Paper | doi.org/10.1080/00295450.2022.2043088
Articles are hosted by Taylor and Francis Online.
As microreactors evolve to become a more affordable and efficient worldwide energy source, the development of moderator material within the system to decrease the required mass of low-enriched uranium fuel is important. The use of low- instead of high-enriched uranium in small nuclear reactors stems from recent national policies associated with nonproliferation. New designs are being developed for a range of applications and nuclear space systems in particular. Using system geometries such as those described in this paper, the next step is to advance the technology readiness level of moderator material such as delta-yttrium hydride (YHx,x = 1.6–2.0) so that it can be qualified for use in a microreactor system. Although characterization of unirradiated material has been documented previously, to fully understand the performance of this material, behavior in relevant irradiation environments must occur. This paper describes the fabrication of yttrium hydride samples through innovative techniques and how these samples were tested in two relevant neutron environments. These two experiments include (1) a critical experiment performed at the National Criticality Experiments Research Center (NCERC) to evaluate reactivity changes in a neutron-critical environment and (2) irradiation in the Advanced Test Reactor (ATR) to assess structural integrity/material form, thermophysical data, hydrogen permeability, and other features post irradiation. For this purpose, hundreds of samples were fabricated for the NCERC and ATR experiments and are described within this paper.