ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Sabharwall, J. L. Hartvigsen, T. J. Morton, J. Yoo, S. Qin, M. Song, D. P. Guillen, T. Unruh, J. E. Hansel, J. Jackson, J. Gehin, H. Trellue, D. Mascarenas, R. S. Reid, C. M. Petrie
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S41-S59
Technical Paper | doi.org/10.1080/00295450.2022.2043087
Articles are hosted by Taylor and Francis Online.
This work provides a summary of selected experimental capabilities being developed to support nonnuclear testing and demonstration of technology in support of microreactors under the U.S. Department of Energy’s (DOE’s) Microreactor Program. Major capabilities include the Single Primary Heat Extraction and Removal Emulator (SPHERE) and the Microreactor Agile Non-nuclear Experimental Test Bed (MAGNET). The SPHERE facility allows for controlled testing of the steady-state and transient heat rejection capabilities of a single heat pipe using electrical heaters that simulate nuclear heating. The facility is capable of monitoring axial temperature profiles along the heat pipe and surrounding test articles during startup, steady-state operation, and transients. Instrumentation includes noncontact infrared thermal imaging, surface thermocouples, spatially distributed fiber optic temperature and strain sensors, electrical power meters, and a water-cooled, gas-gap calorimeter for quantifying heat rejection from the heat pipe. The facility can be operated under both vacuum and inert-gas conditions. The MAGNET facility is a large-scale, 250-kW electrically heated microreactor test bed to enable nonnuclear experimental evaluation of a variety of microreactor concepts. It can be supplied to electrically heat a scaled section of a microreactor and further test the capabilities of heat rejection systems. The initial MAGNET experiments will support technology maturation and reduce uncertainty and risk associated with the design, operation, and deployment of monolithic heat pipe–based reactors. However, this test bed can broadly be applied to multiple microreactor concepts to evaluate a wide range of thermal-hydraulic and structural phenomena such as interface coupling with power conversion units and other collocated systems. MAGNET can evaluate integral thermomechanical effects during electrical heating of an array of heat pipes in a larger test article. Examples of initial testing will include thermal stresses in the monolith and the impact of debonding of a heat pipe from the core block and how that failure could impact surrounding heat pipes, i.e., understanding the potential for cascading failure. This work also discusses some modeling capabilities that can support experiment design, analysis, and interpretation, including the heat pipe code Sockeye and a comparison of thermal-structural simulations performed using ABAQUS and STAR-CCM+.