ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
Donna Post Guillen
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S21-S40
Critical Review | doi.org/10.1080/00295450.2022.2055701
Articles are hosted by Taylor and Francis Online.
Microreactors, or very small, transportable or mobile nuclear reactors with a capacity of less than 20 MW(thermal), are being developed to provide heat and power for myriad applications in remote areas, military installations, emergency operations, humanitarian missions, and disaster relief zones. A wide variety of reactor types are under consideration, including sodium-cooled fast reactors, molten-salt reactors, very high-temperature gas reactors, and heat pipe reactors. One issue common to all microreactor designs is the need to remove heat from the core. The objective of this paper is to identify a spectrum of diverse approaches to thermal management that can be used develop advanced, high-performance heat removal systems to further enhance the expected performance of a 1- to 20-MW(thermal) nuclear reactor. The focus here is on concepts that can provide a passive means of heat removal and are new to nuclear reactors. Different types of passive heat removal strategies for microreactors are examined, including latent heat-transfer devices, such as various types of heat pipes, natural convection and conduction-radiation cooling, and other thermal devices, such as thermoelectrics and thermoacoustics, that can be used to provide power for auxiliary cooling. Many of these concepts have already been fielded in renewable energy systems. Concepts at different stages of technical maturity are outlined to present ideas that can push the boundaries of thermal management in present-day nuclear technology. Practical considerations relative to the integration of these concepts into nuclear systems are given.