ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Commonwealth Fusion Systems partners with Google DeepMind
Google DeepMind—Google’s artificial intelligence development subsidiary—recently announced a new partnership with fusion start-up Commonwealth Fusion Systems. The goal of this collaboration is to leverage AI to both advance plasma simulation and discover novel control strategies, ultimately accelerating CFS’s timeline to deliver commercial fusion to the grid.
Sylvian Kahane, Yair Ben-Dov (Birenbaum), Raymond Moreh
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 115-126
Technical Note | doi.org/10.1080/00295450.2022.2102847
Articles are hosted by Taylor and Francis Online.
Monoenergetic gamma beams (Δ ~ 10 eV) based on thermal neutron capture, in a nuclear reactor, using the V(n,γ) and Fe(n,γ) reactions were utilized for generating fast neutron sources from lead and thallium, respectively, via the 207Pb(γ,n) and 205Tl(γ,n) reactions. It so happens that one of the incident gamma lines of the V source, Eγ = 7163 keV, photoexcites by chance a resonance level in 207Pb, which emits neutrons at an energy of 423 keV. In a similar manner the incident gamma line at Eγ = 7646 keV of the Fe(n,γ) source photoexcites by chance a resonance level in the 205Tl isotope, which emits neutrons at an energy of 99 keV. The cross sections for the neutron emission process were measured and found to be σ(γ,n) = 35 ± 6 mb and 107 ± 17 mb, respectively, with intensities of the order of 104 n/s.