ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Richard L. Reed, Eva C. Uribe, Louise G. Evans
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 105-114
Technical Paper | doi.org/10.1080/00295450.2022.2109098
Articles are hosted by Taylor and Francis Online.
This work presents a novel monitoring method for detecting material loss from the decay inventory of the molten salt breeder reactor (MSBR) by monitoring for changes to the system dynamics using an isotopic ratio. The isotopic masses in the decay inventory of a MSBR were simulated under several material loss scenarios. In each case, the ratio of 231Pa to 233Pa served as a sensitive and lasting indicator of material loss. This isotope ratio quickly decreased outside the normal range after a material loss, and the ratio remained depressed for several years after the loss. The dynamics of this ratio were driven by the periodic batch discard from the decay inventory every 220 days, which was specified in the MSBR design to periodically remove fission product buildup. For this method, isotopic ratios were found to be rapid and enduring indicators of inventory change if they comprise a pair with a short half-life (e.g., 233Pa) and a long half-life (e.g., 231Pa) relative to the effective half-life induced by the driving system process (e.g., the batch discard cycle). Using such an isotope pair enabled a method to monitor for changes to the effective half-life of the system and by extension changes to the system inputs and outputs.