ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Benjamin Wellons, Rishya Sankar Kumaran, Sanghun Lee, Shikha Prasad
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 69-81
Technical Paper | doi.org/10.1080/00295450.2022.2108686
Articles are hosted by Taylor and Francis Online.
An open-source code RadSigPro 1.0 has been developed and used for fast processing of nanosecond-long pulses from scintillation detectors. This processing includes pulse height distribution (PHD), pulse shape discrimination (PSD), and time of flight (TOF). The code has been implemented onto the programmable logic design of a field programmable gate array (FPGA) design for on-the-fly processing of neutron and gamma-ray pulses. A weighted average of the percent difference of the results for RadSigPro 1.0 implemented on a CPU and a FPGA logic design is calculated. This shows a 0% difference for the PHD data sets, a 0.458% and 0.344% difference for the designated gamma detector and neutron detector PSD data sets, respectively, and a 0% difference for the TOF data set. When the FPGA logic design is applied and simulated, it computed the total and tail pulse areas within 5 ns of the arrival of the final data point used for accumulation and also captured the pulse height value within 2 ns of the arrival of the pulse’s maximum data point.