ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Byoungil Jeon, Jinhwan Kim, Myungkook Moon
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 1-14
Technical Paper | doi.org/10.1080/00295450.2022.2096389
Articles are hosted by Taylor and Francis Online.
Radioisotope identification (RIID) is a representative application of deep learning for radiation measurements. Deep learning-based RIID models have been implemented in various types of radiation detectors; however, very few of these models have been interpreted using explainable artificial intelligence (XAI) methods. This paper presents an explanation of a deep learning–based RIID model for a plastic scintillation detector. The RIID task is defined as a multilabel binary classification problem, and the dataset is generated using a random sampling procedure. The identification performance is verified using experimental data. The experimental results demonstrate that the performance of the RIID models increased with the increase in the total counts of the dataset. Additionally, XAI methods are implemented, and their explanatory performance is verified for the spectral input. The domain knowledge of RIID for the plastic scintillation detector is that patterns near the Compton edge can be used as evidence for the existence of radioisotopes. Among the implemented XAI methods, integrated gradient and layerwise relevance propagation exhibited concurrence with the domain knowledge, with the Shapley value explanation method presenting the most reliable results.