ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Byoungil Jeon, Jinhwan Kim, Myungkook Moon
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 1-14
Technical Paper | doi.org/10.1080/00295450.2022.2096389
Articles are hosted by Taylor and Francis Online.
Radioisotope identification (RIID) is a representative application of deep learning for radiation measurements. Deep learning-based RIID models have been implemented in various types of radiation detectors; however, very few of these models have been interpreted using explainable artificial intelligence (XAI) methods. This paper presents an explanation of a deep learning–based RIID model for a plastic scintillation detector. The RIID task is defined as a multilabel binary classification problem, and the dataset is generated using a random sampling procedure. The identification performance is verified using experimental data. The experimental results demonstrate that the performance of the RIID models increased with the increase in the total counts of the dataset. Additionally, XAI methods are implemented, and their explanatory performance is verified for the spectral input. The domain knowledge of RIID for the plastic scintillation detector is that patterns near the Compton edge can be used as evidence for the existence of radioisotopes. Among the implemented XAI methods, integrated gradient and layerwise relevance propagation exhibited concurrence with the domain knowledge, with the Shapley value explanation method presenting the most reliable results.