ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dennis Nikitaev, L. Dale Thomas
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S96-S106
Technical Note | doi.org/10.1080/00295450.2021.2021768
Articles are hosted by Taylor and Francis Online.
Water, ammonia, and other volatiles that can be used for propellant have been found on the Moon, and the technology that will be used to extract them has been laboratory tested. One of the considered propulsion systems for a crewed mission to Mars is nuclear thermal propulsion (NTP). However, current reference missions consider hydrogen as the main propellant, which is technologically difficult to store. Electrolysis units are required to process the lunar water to separate it into oxygen and hydrogen, which is only 1/8 of the mass of water mined. Due to these challenges, a preliminary analysis of alternative propellant nuclear thermal propulsion (A-NTP) expander cycle engines was made. A-NTP engine models that produced 25 000 lbf of thrust, which is comparable to the baseline hydrogen NTP engines, were constructed in Simulink for preliminary analysis, which yielded an Isp of 320.4 s for water and 381.6 s for ammonia. Although this Isp is lower than the most efficient chemical engines, since water and ammonia are used directly and are stored as such, a propellant tank volume decrease of up to 76.1% for water and 69.5% for ammonia is possible. This will decrease the number of launches, given that the tanks are not fully tanked at time of launch and lunar resources are used to fill the tanks completely.