ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Joffrey Dorville, Jacob Tellez, Conner Glatt, Andrew Osborne, Jenifer Shafer, Jeffrey King
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S26-S51
Technical Paper | doi.org/10.1080/00295450.2022.2072649
Articles are hosted by Taylor and Francis Online.
The Megawatt Implementation of a NuclEar ReActor using Low-enrichment uranium (MINERAL) is designed to deliver 2 MW(electric) of steady-state electricity to a colony established on the surface of Mars with a minimum lifetime of 10 years. The main challenge associated with a low-enrichment uranium fission surface power system is reducing the total mass, which will be higher than that of an equivalent high-enrichment uranium system. Optimizing the mass of the system is crucial to limit the amount of Earth-Mars cargo needed to deploy a MINERAL unit. The use of yttrium hydride as a moderator has shown promise in reducing the overall mass of the reactor. An in-house Python framework evaluates the neutronic, thermal-hydraulic, and heat rejection performance throughout the design process. The final design iteration uses a CO2 Brayton cycle cooled by a passive heat rejection system consisting of six panels with a total surface area of 4752 m2. The cylindrical core is fueled with low-enrichment uranium monocarbide with 0.83 wt% of pure 157Gd moderated with yttrium hydride and surrounded by a beryllium oxide reflector. The reactivity is controlled by ten control drums and a central control rod, which provide enough margin to operate the reactor and ensure its subcriticality in case of a submersion accident. The mass of the core with the reflector, reactivity control system, and shield is 7.2 tonnes.