ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ernestas Narkūnas, Artūras Šmaižys, Povilas Poškas, Audrius Šimonis, Valerij Naumov, Dmitrij Ekaterinichev
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1876-1889
Technical Paper | doi.org/10.1080/00295450.2022.2092367
Articles are hosted by Taylor and Francis Online.
This paper presents an evaluation of the gamma-radiation shielding capabilities of the CONSTOR® RBMK-1500/M2 cask dedicated for the storage of spent nuclear fuel at the Ignalina Nuclear Power Plant in Lithuania. This cask is of a new design with increased capacity compared to the older CONSTOR RBMK-1500 and CASTOR RBMK-1500 casks and new facility for their interim storage has been installed. “Hot tests” conducted at this new interim storage facility included dose rate measurements of the CONSTOR RBMK-1500/M2 casks that were loaded with particular sets of spent nuclear fuel half-assemblies and transferred to the facility for subsequent interim storage. Having actual data on the spent nuclear fuel half-assemblies that were loaded into a particular cask, gamma dose rate modeling of that CONSTOR RBMK-1500/M2 cask (namely, cask ID 153) was performed. Modeling was performed using the MCNP (based on the stochastic mathematical method) and the VISIPLAN and MicroShield (both based on the deterministic mathematical method) computer codes. The obtained modeling results were compared between the different codes and with the measurement results. The performed analysis revealed that modeled gamma dose rates are in good agreement for all analyzed codes, although agreement with the measurements is to some extent less.