ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jarrod M. Gogolski, Kathryn M. L. Taylor-Pashow, Tracy S. Rudisill, Michael L. Restivo, John M. Pareizs, Robert J. Lascola, Patrick E. O’Rourke, William. E. Daniel
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1867-1875
Technical Paper | doi.org/10.1080/00295450.2022.2092358
Articles are hosted by Taylor and Francis Online.
The dissolution of used nuclear fuel generates a variety of off-gasses including flammable hydrogen and other species that are a concern for environmental release. The H-Canyon facility at the Savannah River Site is currently dissolving aluminum-clad research reactor fuel from material test reactors and the High Flux Isotope Reactor (HFIR) using a mercury-catalyzed nitric acid flowsheet. Savannah River National Laboratory recently developed and deployed a Raman spectrometer to monitor the off-gas stream from the dissolution process. Results from these measurements indicated a lack of the expected hydrogen, nitrous oxide, and nitric oxide in the off-gas stream. It was proposed that the silver on the silver nitrate–coated berl saddles present in the reactors for iodine capture were acting as a catalytic hydrogen recombiner. Nitric oxide is readily oxidized to nitrogen dioxide under normal conditions, but it was unclear what happened to the nitrous oxide. A laboratory-scale iodine reactor was assembled and filled with silver nitrate–coated berl saddles to help ascertain the fate of nitrous oxide and hydrogen. Testing with this laboratory-scale reactor observed the recombination of hydrogen when a simulated dissolver off-gas was passed through the reactor containing silver nitrate–coated berl saddles at the approximate temperatures seen in H-Canyon. However, the nitrous oxide concentration was unchanged, suggesting a more complex process occurring within the off-gas stream before it reaches the iodine reactors at H-Canyon.