ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Caishan Jiao, Hao Wang, Yaorui Li, Meng Zhang, Yang Gao, Mingjian He
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1858-1866
Technical Paper | doi.org/10.1080/00295450.2022.2081483
Articles are hosted by Taylor and Francis Online.
With the rapid development of nuclear power, increasing attention has been paid to the treatment of low-level radioactive wastewater (LLRW). In this study, reverse osmosis (RO) and membrane distillation (MD) are used to treat LLRW containing Ce(III), U(VI), and Co(II). RO was used for the purification of LLRW. MD was used for further concentration of RO concentrate. The effect of the operating parameters, including operating pressure (0.6 to 1.4 MPa), feed pH (7 to 9), feed concentration (2 to 10 mg/L), feed temperature (50°C to 90°C), and feed flow rate (80 to 160 L/h) on the permeate flux and the rejection rate of the RO process and MD process was studied. The results demonstrate that it is very effective to use the RO process to treat LLRW containing Ce(III), U(VI), and Co(II), with the rejection rates of Ce(III), U(VI), and Co(II) higher than 99.97%, 99.98%, and 99.35%, respectively. The operating pressure has a significant effect on the permeate flux in the RO process. The permeate flux increases from 9.84 to 23.03 L/m2·h when the operating pressure increases from 0.6 to 1.4 MPa. The feed pH has an apparent influence on nuclide rejection. At the feed pH = 9, the rejection rates of Ce(III), U(VI), and Co(II) by the RO process can reach 99.99%, 99.99%, and 99.79%, respectively. MD can reject almost all the nuclides in the RO concentrate, with rejection rates consistently higher than 99.98%. Increasing the feed temperature and feed flow rate can result in a significant increase in the permeate flux, but has almost no effect on nuclide rejection in the MD process.