ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Zixu Xu, Guofeng Qu, Min Yan, Su Shen, Yu Huang, Xin Zhang, Lei Chen, Xingquan Liu, Jifeng Han
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1847-1857
Technical Paper | doi.org/10.1080/00295450.2022.2076489
Articles are hosted by Taylor and Francis Online.
The performance of a prompt gamma neutron activation analysis (PGNAA) system for lower-weight landmine detection is investigated in this study. A total of 2880 characteristic gamma-ray spectra of 10 buried samples (five explosives and five nonexplosives), within a weight range of 0.01 to 10 kg and a hidden depth of 2.5 to 15 cm, under 0%, 10%, and 20% soil moisture conditions, were generated using Monte Carlo N-Particle Code 5 (MCNP5). The conventional characteristic peak analysis method was not applicable to lower-weight sample detection. The discrimination accuracy was acceptable only under 0% soil moisture when explosives exceeded 2 kg with the discrimination accuracy exceeding 80%. Four machine learning models, including radial basis function (RBF) neural network, fully connected neural network, XGBoost, and LightGBM, were used to perform whole-spectrum analysis, and better performance was demonstrated. The discrimination accuracy exceeded 90% in most cases, and the RBF neural network was demonstrated to be the best performance (96.6% for explosives and 95.1% for nonexplosives). All four of these models were insensitive to soil moisture. The minimum detectable weight of 0.02 kg for the simulation data provided valuable reference for experimental applications. These results indicate that machine learning was an effective method for lower-weight landmine detection using PGNAA under complicated conditions.