ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Zixu Xu, Guofeng Qu, Min Yan, Su Shen, Yu Huang, Xin Zhang, Lei Chen, Xingquan Liu, Jifeng Han
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1847-1857
Technical Paper | doi.org/10.1080/00295450.2022.2076489
Articles are hosted by Taylor and Francis Online.
The performance of a prompt gamma neutron activation analysis (PGNAA) system for lower-weight landmine detection is investigated in this study. A total of 2880 characteristic gamma-ray spectra of 10 buried samples (five explosives and five nonexplosives), within a weight range of 0.01 to 10 kg and a hidden depth of 2.5 to 15 cm, under 0%, 10%, and 20% soil moisture conditions, were generated using Monte Carlo N-Particle Code 5 (MCNP5). The conventional characteristic peak analysis method was not applicable to lower-weight sample detection. The discrimination accuracy was acceptable only under 0% soil moisture when explosives exceeded 2 kg with the discrimination accuracy exceeding 80%. Four machine learning models, including radial basis function (RBF) neural network, fully connected neural network, XGBoost, and LightGBM, were used to perform whole-spectrum analysis, and better performance was demonstrated. The discrimination accuracy exceeded 90% in most cases, and the RBF neural network was demonstrated to be the best performance (96.6% for explosives and 95.1% for nonexplosives). All four of these models were insensitive to soil moisture. The minimum detectable weight of 0.02 kg for the simulation data provided valuable reference for experimental applications. These results indicate that machine learning was an effective method for lower-weight landmine detection using PGNAA under complicated conditions.