ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Yuxuan Liu, Brendan Kochunas, Tat Nghia Nguyen, Hubert Ley, Richard Vilim
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1832-1846
Technical Paper | doi.org/10.1080/00295450.2022.2092357
Articles are hosted by Taylor and Francis Online.
Advances in reducing operations and maintenance (O&M) costs are crucial to improving the viability of the nuclear energy industry. One of the important aspects to reduce the cost of maintenance activities in nuclear power plants is to automate equipment monitoring and fault diagnoses. As an inverse problem to fault diagnoses, finding a suitable population of sensors that enable a requisite degree of monitoring capability, preferably at low cost, is a prerequisite that ensures a successful monitoring and diagnosis capability. This work develops an optimization tool for the sensor assignment problem of thermal-hydraulic systems that minimizes the cost for a required diagnosing capability. The optimization is driven by a genetic algorithm (GA), with its parameters tuned by Bayesian optimization (BO). Compared to the conventional GA parameter-tuning approach based on experimental designs, the BO-tuned parameters show better performance for the test problem with various allocated computing resources. It is also verified that the BO-tuned parameters perform better for several problem variants based on the original test problem, which has practical values in meeting additional engineering goals in the sensor assignment process.