ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
S. Esnouf, A. Dannoux-Papin, C. Chapuzet, V. Roux-Serret, V. Piovesan, F. Cochin
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1806-1821
Technical Paper | doi.org/10.1080/00295450.2022.2081481
Articles are hosted by Taylor and Francis Online.
The French Alternative Energies and Atomic Energy Commission and Orano have developed a modeling tool named the Simulation TOol Of RAdiolysis Gas Emission (STORAGE) for assessing gas generation of intermediate-level waste (ILW). The first version of this model was designed to estimate gas (more specifically hydrogen) production by radiolysis of organic and water-containing materials.
The code deals with different types of waste packages: metal drums, concrete drums, bitumen packages, and compacted waste containers. Diverse radioactive waste can be handled: spent fuel cladding, reprocessing sludge, contaminated technological waste (gloves, bags, bottles, etc.), ion exchange resin, etc.
The validity of the model was evaluated using a series of measurements performed on U,Pu–contaminated solid waste from the Orano plutonium laboratories at the MELOX facility. A benchmark study for compacted waste containers was also implemented; the results of STORAGE were compared with reference calculations performed by Orano Projets.
Future improvements of the STORAGE model are also presented.