ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tyler R. Steiner, Richard H. Howard
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1745-1755
Technical Paper | doi.org/10.1080/00295450.2022.2072652
Articles are hosted by Taylor and Francis Online.
A high-temperature, steady-state, in-pile experiment was developed to simulate prototypical nuclear thermal propulsion conditions. The experimental development of the resistively heated test apparatus involved spatially scaling the device to a larger heated region from a previous smaller out-of-pile prototype. A series of tests and investigations were conducted to replicate the smaller out-of-pile system’s success of achieving 2500 K. However, limitations within the larger assembly were identified; specifically, the heater filament design does not scale well. The larger assembly can reliably generate usable temperature levels from room temperature up to those exceeding 1300 K for hours. It can briefly sustain a usable 1800 K. The larger system is achieving temperatures over 2500 K, but these are localized and unable to be monitored in the current design. The achieved temperature levels remain suitable for testing various components considered for a nuclear thermal rocket. However, due to the limitations of the current heater filament, it is recommended that the apparatus be redesigned to utilize a rigid heating element similar to that used during the Radioisotope Propulsion Technology Program (Project POODLE) in the 1960s.