ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Zhongliang Lv, Zhong Chen, Zijia Zhao, Dongmei Pan, Lichao Tian, Xiaohu Yang
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1721-1733
Technical Paper | doi.org/10.1080/00295450.2022.2061257
Articles are hosted by Taylor and Francis Online.
The multibeam concept for the accelerator-driven subcritical reactor (ADS) has advantages in the power distribution of the core, and it could reduce the requirement of proton beam current intensity for each beam. In comparison with the single-beam concept, the multibeam concept could also reduce the thermal load of the beam window significantly. This paper focuses on the study of external source effects for different multibeam concepts for an ADS for nuclear waste transmutation (ADS-NWT). The different multibeam concepts include the three-beam, four-beam, six-beam, and seven-beam concepts for the ADS-NWT. By using the calculation tools FLUKA and SuperMC with the nuclear data library ENDF/B-VII.1, the variations of the keff and total power, as the function of the position of the spallation targets, are provided for each multibeam concept. The results show that the keff and total power were affected by an interference effect between the spallation targets. For the transport of fission neutrons in the core, the maximum radius of the interference effect between the spallation targets was 40 cm. Considering the transport of spallation neutrons in the ADS-NWT, the maximum radius of the interference effect between the spallation targets was 60 cm. The spallation targets were moved from the inner circle to the outer circle of the fuel zone, and the different variations in keff and total power trend for the three-beam, four-beam, six-beam, and seven-beam concepts for the ADS-NWT were obtained.