ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Zhongliang Lv, Zhong Chen, Zijia Zhao, Dongmei Pan, Lichao Tian, Xiaohu Yang
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1721-1733
Technical Paper | doi.org/10.1080/00295450.2022.2061257
Articles are hosted by Taylor and Francis Online.
The multibeam concept for the accelerator-driven subcritical reactor (ADS) has advantages in the power distribution of the core, and it could reduce the requirement of proton beam current intensity for each beam. In comparison with the single-beam concept, the multibeam concept could also reduce the thermal load of the beam window significantly. This paper focuses on the study of external source effects for different multibeam concepts for an ADS for nuclear waste transmutation (ADS-NWT). The different multibeam concepts include the three-beam, four-beam, six-beam, and seven-beam concepts for the ADS-NWT. By using the calculation tools FLUKA and SuperMC with the nuclear data library ENDF/B-VII.1, the variations of the keff and total power, as the function of the position of the spallation targets, are provided for each multibeam concept. The results show that the keff and total power were affected by an interference effect between the spallation targets. For the transport of fission neutrons in the core, the maximum radius of the interference effect between the spallation targets was 40 cm. Considering the transport of spallation neutrons in the ADS-NWT, the maximum radius of the interference effect between the spallation targets was 60 cm. The spallation targets were moved from the inner circle to the outer circle of the fuel zone, and the different variations in keff and total power trend for the three-beam, four-beam, six-beam, and seven-beam concepts for the ADS-NWT were obtained.