ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Joseph W. Nielsen, Michael A. Reicheberger, Bryon J. Curnutt, Dong O. Choe, Irina Glagolenko, Jody Henley
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1704-1720
Technical Paper | doi.org/10.1080/00295450.2022.2067448
Articles are hosted by Taylor and Francis Online.
One of the Advanced Test Reactor’s (ATR’s) functions is to irradiate and qualify nuclear fuels and materials. Due to the large number of experiment or test positions, the cost, and the limited number of vessel penetrations for instrumentation, in-core instrumentation for most experiments is not feasible. In such instances, modeling of experiment conditions using high-fidelity neutron transport codes can quantify such conditions as fission power density and fissile material burnup during irradiation. Validation of fissile material burnup can only be performed during post-irradiation examination, which typically occurs months—or even years—following irradiation. In most experiments, fission power density and fissile material burnup are directly proportional to the thermal neutron flux in the ATR. Additionally, fast neutrons are born from fission in the ATR core, affording a validation of power distribution within the reactor’s experiment locations. During each irradiation cycle, flux wires installed throughout the ATR can be used to validate computational models and determine an adjusted neutron flux for many of the experiment positions. The flux wires are installed as requested by the experiment sponsors in several of the ATR flux traps and consist of cobalt-aluminum alloy and nickel wires. Both kinds of wire enable measurements of the thermal and fast neutron flux in each experiment position. This paper presents the protocol for validating computational models for experiments using flux wires installed in the experiment positions, as well as the results for flux wires placed in the ATR safety rod guide tubes. The best estimate is typically referred to as the adjusted neutron flux. The calculated unadjusted neutron flux is referred to as the a priori neutron flux. The methods presented here provide the adjusted neutron flux, given both the measured and a prior fluxes. The adjusted flux is compared to the a priori flux to provide a bias in the calculated results and the adjusted results. Two model types are evaluated; an eigenvalue case and fixed-source case. Both conditions demonstrate relatively good agreement. The uncertainty for the adjusted flux ranges from 5% to 6% for all three energy ranges. For the eigenvalue case, the bias between the a priori and the adjusted neutron flux is within the statistical uncertainty in all but two wire pairs. For the fixed-source model, four wire pairs are outside of the uncertainty of the adjusted flux. The bias between the a priori and adjusted fast neutron flux is outside of the statistical range for four wires in the eigenvalue case and nine wires in the fixed-source model. As the differences are not contained to one flux trap, it can be assumed that the biases in the calculated models are attributed to localized effects in modeling. An additional evaluation was performed for the ATF-1 experiment in the ATR “I” positions. The differences between the adjusted and a priori are more pronounced in two of the test positions, indicating that additional model evaluation is needed, in particular in the region near the boundary of the ATR model. It is also noted that the eigenvalue model provides slightly better results in the flux trap positions. The fixed-source model is more computationally efficient though produces less accurate results; the differences in some cases are negligible. The work documented in this paper provides a methodology that extends the validation protocol established at the ATR for flux measurements to validate computational models with limited measurement capability during a cycle.