ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Catherine Romano, Ram Venkataraman, David Glasgow, Ben Roach
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1696-1703
Technical Paper | doi.org/10.1080/00295450.2022.2070353
Articles are hosted by Taylor and Francis Online.
The cross sections of 237Np and 238Np are important for accurate modeling and simulation of 238Pu in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Uncertainties in these cross sections can impact the ability to predict and optimize the target design and loading for 238Pu production targets. The effective capture cross section of 237Np in the location of pneumatic tube 1 in HFIR was measured as a first step in the measurement of the 238Np capture and fission cross sections. This paper describes the flux measurements, 237Np experiments, and data analysis of the 237Np capture cross section in HFIR.