ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Milan Vujović, Miloš Vujisić
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1649-1665
Technical Paper | doi.org/10.1080/00295450.2022.2070354
Articles are hosted by Taylor and Francis Online.
Several select geopolymer, polymer, and composite materials are considered as potential candidates for the inner shielding in containers used for storage and disposal of low- and intermediate-level radioactive waste, from the perspective of radiation effects. The suitability of the probed materials is examined through Monte Carlo simulations, which yield absorbed dose values in container inner shieldings of various compositions and dimensions. The radioactive waste considered in the simulation models contains 60Co or 137Cs and is placed inside standard 216.5-L (55-gal) drums, in either compacted or solidified form. The influence of container stacking, in either a storage or a disposal environment, on the dose in the shielding is also taken into account. The simulation results are used for calculating the dose-dependent overpressure within the container caused by the gas generated in the inner shielding through radiolysis. Two types of waste activity limits are determined for each of the researched shielding materials: one below which the overpressure decreases after the initial heat-induced jump and another that results in an overpressure that stays just below the maximum tolerable value. Dose-dependent changes of the polymer and composite shielding materials’ molecular weights are also calculated. The obtained results show that with regard to the radiation effects caused by the investigated sources, the examined materials are compatible with the proposed use as inner shielding in radioactive waste containers.