ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Jeremy W. King, Danielle M. South, Craig M. Marianno, Sunil S. Chirayath
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1635-1648
Technical Paper | doi.org/10.1080/00295450.2022.2076487
Articles are hosted by Taylor and Francis Online.
Dry casks will be a prevalent spent nuclear fuel (SNF) storage option until solutions for long-term storage or disposal are deployed. A dry cask storing 32 pressurized water reactor fuel assemblies will likely contain about 20 significant quantities of plutonium, so these structures require effective safeguards monitoring. An external remote monitoring system (RMS) is proposed to advance the current dry cask safeguards regime which relies on containment and surveillance. The objectives of this study were to assess the performance of the external RMS as a detection system and to develop a simulation approach for estimating measurements. Small-scale experiments of generic neutron source diversions mimicking SNF diversion from a dry cask were conducted and the nondetection probability was calculated for a variety of measurement times. MCNP simulations were carried out to assess the degree to which the measurement results could be predicted. A previous simulation methodology was advanced to consider uncertainty in the activity of sources being measured. The study concluded that the external RMS performs well as a neutron detection system and that MCNP simulation is a viable tool both for predicting measurements made with the external RMS and for calculating nondetection probabilities of hypothetical, generic diversion scenarios.