ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Patrick Maedgen, Benjamin Wellons, Shikha Prasad, Jian Tao
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1522-1539
Technical Paper | doi.org/10.1080/00295450.2022.2045533
Articles are hosted by Taylor and Francis Online.
Various machine learning techniques have been implemented to assist in neutron-gamma discrimination with great success compared to traditional methods. Despite this, the fundamental structure of a pulse shape as it relates to machine learning has not yet been explored in detail, and the optimal number of pulse vector features needed for training is still unknown. In this study, support vector machines (SVMs) using linear, radial basis, and exponential kernel functions are fitted on data of two different forms: waveforms that partially cover the original pulses and principal components extracted from those pulses. The described methods correctly classified 98.02% for neutrons and 97.84% for gamma rays. The efficiency of the SVM was improved by extracting principal components from the waveforms. That is, fewer features were needed to discriminate between neutrons and gamma rays without negatively impacting the classification accuracy. This study also shows that utilizing a nonlinear kernel significantly reduces the number of features required to reach high classification accuracy. SVMs that did this could make accurate classifications 97% of the time with data that had fewer than 50 features.