ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Patrick Maedgen, Benjamin Wellons, Shikha Prasad, Jian Tao
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1522-1539
Technical Paper | doi.org/10.1080/00295450.2022.2045533
Articles are hosted by Taylor and Francis Online.
Various machine learning techniques have been implemented to assist in neutron-gamma discrimination with great success compared to traditional methods. Despite this, the fundamental structure of a pulse shape as it relates to machine learning has not yet been explored in detail, and the optimal number of pulse vector features needed for training is still unknown. In this study, support vector machines (SVMs) using linear, radial basis, and exponential kernel functions are fitted on data of two different forms: waveforms that partially cover the original pulses and principal components extracted from those pulses. The described methods correctly classified 98.02% for neutrons and 97.84% for gamma rays. The efficiency of the SVM was improved by extracting principal components from the waveforms. That is, fewer features were needed to discriminate between neutrons and gamma rays without negatively impacting the classification accuracy. This study also shows that utilizing a nonlinear kernel significantly reduces the number of features required to reach high classification accuracy. SVMs that did this could make accurate classifications 97% of the time with data that had fewer than 50 features.