ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Patrick Maedgen, Benjamin Wellons, Shikha Prasad, Jian Tao
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1522-1539
Technical Paper | doi.org/10.1080/00295450.2022.2045533
Articles are hosted by Taylor and Francis Online.
Various machine learning techniques have been implemented to assist in neutron-gamma discrimination with great success compared to traditional methods. Despite this, the fundamental structure of a pulse shape as it relates to machine learning has not yet been explored in detail, and the optimal number of pulse vector features needed for training is still unknown. In this study, support vector machines (SVMs) using linear, radial basis, and exponential kernel functions are fitted on data of two different forms: waveforms that partially cover the original pulses and principal components extracted from those pulses. The described methods correctly classified 98.02% for neutrons and 97.84% for gamma rays. The efficiency of the SVM was improved by extracting principal components from the waveforms. That is, fewer features were needed to discriminate between neutrons and gamma rays without negatively impacting the classification accuracy. This study also shows that utilizing a nonlinear kernel significantly reduces the number of features required to reach high classification accuracy. SVMs that did this could make accurate classifications 97% of the time with data that had fewer than 50 features.